Isolation, Characterization, and Spatial Distribution of Cardiac Progenitor Cells in the Sheep Heart.
نویسندگان
چکیده
BACKGROUND Laboratory large animal models are important for establishing the efficacy of stem cell therapies that may be translated into clinical use. The similarity of ovine and human cardiovascular systems provides an opportunity to use the sheep as a large animal model in which to optimize cell-based treatments for the heart. Recent clinical trials in humans using endogenous cardiovascular progenitor cells report significant improvement in cardiac function following stem cell-based therapy. To date, however, endogenous cardiovascular progenitor cells have not been isolated from the sheep heart. METHODS Cardiovascular cells expressing SSEA-4, CD105 and c-kit were isolated by flow cytometry and cloned from the right atrium of neonatal sheep. The expression of GATA-4, c-kit, and Isl1 was identified by PCR in the cloned cells. Immunohistochemical staining was used to compare the number of SSEA-4 positive cells in the right auricle, right atrium, left ventricle and the apex of the heart of fetal, neonatal and adult sheep. The number of SSEA4+cells was also compared in fetal, pregnant and non-pregnant adult sheep. RESULTS Four distinct cardiac progenitor cell sub-populations were identified in sheep, including CD105+SSEA-4+c-kit+Isl1+GATA-4+cells, CD105+SSEA-4+c-kit+Isl1+GATA-4-cells, CD105+SSEA-4-c-kit-Isl1+GATA-4-cells, and CD105+SSEA-4-c-kit+Isl1+GATA-4-cells. Immunohistochemical staining for SSEA-4 showed that labeled cells were most abundant in the right atrium of fetal hearts where niches of progenitor cells could be identified. CONCLUSION We determined the phenotype and distribution of cardiac progenitor cells in the sheep heart. The availability of cloned endogenous cardiac progenitor cells from sheep will provide a valuable resource for optimizing the conditions for cardiac repair in the ovine model.
منابع مشابه
Isolation and Characterization of the Progenitor Cells From the Blastema Tissue Formed at Experimentally-Created Rabbit Ear Hole
Objective(s): Throughout evolution, mammalians have increasingly lost their ability to regenerate structures however rabbits are exceptional since they develop a blastema in their ear wound for regeneration purposes. Blastema consists of a group of undifferentiated cells capable of dividing and differentiating into the ear tissue. The objective of the present study is to isolate, culture expa...
متن کاملINHIBITION OF WNT3A DIMINISHED ANGIOGENIC DIFFERENTIATION CAPACITY OF RAT CARDIAC PROGENITOR CELLS
Background & Aims: Myocardial infarction is a leading cause of human mortality in industrialized and developing societies. Limited restorative ability of of cardiomyocytes after ischemic changes can causes extensive damage lead to prominent chronic heart failure. At present, the application of certain drugs is touted as one of the main available approaches to inhibit the spread of the lesion an...
متن کاملAre Stem Cells the next Therapeutic Tool for Heart Repair?
Cardiovascular disease remains the leading cause of morbidity and mortality in the United States and Europe. In recent years, the understanding that regenerative processes exist at the level of the myocardium, has placed stem cell research at center stage in cardiology. A stem cell is a cell that has the ability to divide (self replicate) for indefinite periods often throughout the life of the ...
متن کاملTranslation of Methdology used in Human Myocardial Imaging to a Sheep Model of Acute Myocardial Infarction
Background: Pre-clinical investigation of stem cells for repairing damaged myocardium predominantly used rodents, however large animals have cardiac circulation closely resembling the human heart. The aim of this study was to evaluate whether SPECT/CT myocardial perfusion imaging (MPI) could be used for assessing sheep myocardium following an acute myocardial infarction (MI) and response to int...
متن کاملO-3: Drug Repositioning by Merging Gene Expression Data Analysis and Cheminformatics Target Prediction Approaches
The transcriptional responses of drug treatments combined with a protein target prediction algorithm was utilised to associate compounds to biological genomic space. This enabled us to predict efficacy of compounds in cMap and LINCS against 181 databases of diseases extracted from GEO. 18/30 of top drugs predicted for leukemia (e.g. Leflunomide and Etoposide) and breast cancer (e.g. Tamoxifen a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of clinical & experimental cardiology
دوره S6 شماره
صفحات -
تاریخ انتشار 2012